
Finding security
vulnerabilities

Matias Madou,
Security Researcher

At Fortify

2

About me

Security Researcher @ Fortify Software

Focus on new techniques to find vulnerabilities
(static and dynamic)

Find new ways to protect WebApps

Contributor to BSIMM Europe

Conference Speaker (academic and industry)

History in Code Obfuscation (& Binary Rewriting)

3

Setup

Introduction to static analysis

Demo:

Scanning a sample application

Going through issues

Fine tuning the analysis (custom rules)

4

Success is foreseeing failure.
– Henry Petroski

5

Security approach these days

Try Harder Test Your Way Out

• Do a penetration test
on the final version.
• Scramble to patch
findings.

• Pen testing is good for
demonstrating the
problem.
• Doesn’t work for the
same reason you can’t
test quality in.

Fix It Later

• Code as usual.
• Build a better firewall
(app firewall, intrusion
detection, etc.)

• More walls don’t help
when the software is
meant to communicate.
• Security team can’t
keep up.

• Our people are smart
and work hard.
• Just tell them to stop
making mistakes.

• Not everyone is going
to be a security expert.
• Getting security right
requires feedback.

6

Plan Build FieldTest

• Firewalls
• Intrusion Detection
• Penetration Testing

Security in the Development Lifecycle

7

Plan Build FieldTest

• Risk Assessment
• Code Review
• Security Testing

Effective security from non-experts

Security in the Development Lifecycle

8

Security in the Development Lifecycle

9

Plan FieldTest

This Talk: Analysis during the Development Lifecycle

Dynamic
Analysis

Runtime
Protection

Static
Analysis

Build

10

Plan FieldTest

Security in the Development Lifecycle

Dynamic
Analysis

Runtime
Protection

Static
Analysis

Build

11

Static Analysis: Defined

Analyze code without executing it

Consider many more possibilities than you could
execute with conventional testing

Doesn’t know what your code is supposed to do

Must be told what to look for

12

chainsaw

Static Analysis: The Tool

13

Under the Hood of a Static Analysis Tool

14

...

user = request.getParameter("p_user");

try {

sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);

}

...

Code Example: SQL Injection

Class

Class Function

Function

1. Source Code
2. Model
3. Security Knowledge

Sources of taint: Class: ServletRequest, Function: getParameter return
PassThrough: Class: String return
Sinks Class: Statement, Function: executeQuery arg1

15

...

request.getParameter("p_user");

try {

"SELECT * FROM users " +

"WHERE id='" + + "'";

stmt.executeQuery(sql);

}

...

Code Example: SQL Injection

Class

Class Function

Function

1. Source Code
2. Model
3. Security Knowledge
4. Perform Analysis
5. Present Results

Sources of taint: Class: ServletRequest, Function: getParameter
PassThrough: Class: String
Sinks Class: Statement, Function: executeQuery

user =

sql =

user

return
return
arg1

16

Critical Attributes

Language support
Understands the relevant languages/dialects

Analysis algorithms
Uses the right techniques to find and prioritize issues

Capacity
Able to gulp down millions of lines of code

Rule set
Modeling rules, security properties

Results management
Allow human to review results

Prioritization of issues

Control over what to report

17

False positives (false issues reported)

Incomplete/inaccurate model

Missing rules

Conservative analysis

False negatives (real issues not reported)

Incomplete/inaccurate model

Missing rules

Forgiving analysis

Only Two Ways to Go Wrong

The tool that

cried “wolf!” Missing a

detail can kill.

Developer Auditor

18

Two Ways to Use the Static Analysis Tool

1. Analyze completed programs

Large number of results

Most people have to start here

Good motivator

1. Analyze as you write code

Run as part of build

Nightly/weekly/milestone

Fix as you go

19

1) Some culture change required

More than just another tool

Often carries the banner for software security
program

Pitfall: the tool doesn’t solve the problem by itself

2) Define the playing field

Choose specific objectives

Build a gate

3) Teach up front

Software security education is paramount

Tool training is helpful too

Adopting a Static Analysis Tool

20

4) Start small

Do a pilot rollout to a friendly dev group

Build on your success

5) Go for the throat

Tools detect lots of stuff. Turn most of it off.

Focus on easy-to-understand, highly relevant problems.

6) Appoint a champion

Make sure there is a point person on the dev team

Choose a developer who knows a little about everything

Adopting a Static Analysis Tool

21

7) Measure the outcome

Keep track of tool findings

Keep track of outcome (issues fixed)

8) Make it your own

Investigate customization

Map tool against internal security standards.

Best case scenario is cyclic:

The tool reinforces coding guidelines

Coding guidelines are written with automated checking in mind

9) The first time around is the worst

Budget 2x typical cycle cost

Typical numbers: 10% of time for security,
20% for the first time

Adopting a Static Analysis Tool

22

Challenges of Static Analysis

1. Completed programs

Are not written with security in mind

Contain multiple paradigms and technologies

Exemplify varying developer skill and techniques

2. Which causes static analysis to produce

Large numbers of issues

Widely varying issues

Issues that are difficult to triage

24

Demo Time!

25

Plan FieldTest

Security in the Development Lifecycle

Dynamic
Analysis

Runtime
Protection

Static
Analysis

Build

26

Team Sizes at Microsoft

From The Build Master: Microsoft’s Software Configuration

Management Best Practices (Maraia 2005)

27

Problem

QA people lack security understanding
(and we will not force them to have that!)

Good:

Have good test coverage

Time and resources

28

Why Fault Injection Fails

Bad input derail the program

Cannot mutate function tests and retain coverage

Result:
Bad test coverage

Missed Vulnerabilities

Add
to cart

Enter
Address

Enter
CC

Input Input Input

29

Example: SQL Injection

...

user = request.getParameter("p_user");

try {

sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);

}

...

TaintUtil.setTaint(user, 1);

TaintUtil.checkTaint(sql);

TaintUtil.setTaint(sql,user.getTaint());

30

Framework

Instrument the program

1. Methods that introduce input

HttpServletRequest.getParameter()

PreparedStatement.executeQuery()

…

2. Methods to check for taint

Statement.execuetQuery()

JspWriter.print()

…

Mechanism to track Taint

Modify the java.lang.String class

Modify StringBuilder en StringBuffer

31

Plan FieldTest

Security in the Development Lifecycle

Dynamic
Analysis

Runtime
Protection

Static
Analysis

Build

32

Protecting Programs at Runtime

If you can find bugs: fix them!

Additional layer of protection

More context than external systems:

Flexible response: log, block, etc

Low performance overhead is a must

Potential to detect misuse in addition to bugs

Apache

httpd

Apache Tomcat

Web Application Firewalls

Web Application

Client

Runtime Protection

33

Plan FieldTest

Security in the Development Lifecycle

Dynamic
Analysis

Runtime
Protection

Static
Analysis

Build

So the 360 view of the program during the development cycle

34

Summary

Mistakes happen. Plan for them!

Security is now part of the SDLC

Tools bring security expertise

Tools make code review efficient

They are not an out-of-the box solution

35

Thanks!

Matias Madou

mmadou@fortify.com

