Finding security
vulnerabilities

Matias Madou,
Security Researcher
At Fortify

About me

e Security Researcher @ Fortify Software

» Focus on new techniques to find vulnerabilities
(static and dynamic)

» Find new ways to protect WebApps
e Contributor to BSIMM Europe
e Conference Speaker (academic and industry)
e History in Code Obfuscation (& Binary Rewriting)

2 [FORTFY

e Introduction to static analysis

e Demo:
» Scanning a sample application
» Going through issues
» Fine tuning the analysis (custom rules)

3 [FORTFY

TO ENGINEER
® [S HUMAN

WHEN -
SCIENCE

GOES
WRONG

HENRY PETROSKI

D IMO _EVAY

Success Is foreseeing failure.
— Henry Petroski

HE’DRTIFW

Security approach these days

Try Harder Fix It Later Test Your Way Out
» Our people are smart « Code as usual. * Do a penetration test
and work hard. * Build a better firewall on the final version.
« Just tell them to stop (app firewall, intrusion « Scramble to patch
making mistakes. detection, etc.) findings.

* Not everyone is going « More walls don't help « Pen testing is good for

to be a security expert. when the software is demonstrating the
» Getting security right meant to communicate. problem.
requires feedback. * Security team can't « Doesn’t work for the
keep up. same reason you can't
test quality in.
5 IFORTIFY

Security in the Development Lifecycle

Plan Build

e Firewalls
e Intrusion Detection
e Penetration Testing

6 [FoRTIFY

Security in the Development Lifecycle

Test Field

e Risk Assessment
e Code Review
e Security Testing

Effective security from non-experts -
7 t—— [FrrFY

Security in the Development Lifecycle

SOFTWARE
SECURITY

BUILDING SECURITY IN

GARY NcGRAW

Foreword by Jan Geer

SECURITY EXTERMAL CODE REVIEW PEMETRATION
RECUIREMEMTS REVIEW (TooLs) TESTIMG
ABUSE RIsK RI5K=BASED RIsK SECURITY
CALES AMALYSIS SECURITY TESTS AMNALYSIS OPERATIONS
RECHIIREMENTS ARCHITECTURE TEST PLANS {ODE TESTS AND FEEDBACK FROM
AMD USE CASES AMD DESIGH TEST RESLILTS THE FIELD

THE SECURITY
DEVELOPMENT

LIFECYCLE

This Talk: Analysis during the Development Lifecycle

..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' :

' ;

Plan : Build Test Field |
[

' ;

' :

: Static Dynamic Runtime !

. Analysis Analysis Protection !

[

Security in the Development Lifecycle

Static Dynamic Runtime
Analysis Analysis Protection

Static Analysis: Defined

e Analyze code without executing it

e Consider many more possibilities than you could
execute with conventional testing

e Doesn’t know what your code is supposed to do
e Must be told what to look for

11 [FORTFY

Static Analysis: The Tool

Under the Hood of a Static Analysis Tool

C .n0F
o |

_ Ca-_F‘an:‘q
-.Solurce B CHoHR
== - ™ > (SO -
| Build Perform Present
Model Analysis Results

47

Security
Knowledge

13 [FORTIFY

Code Example: SQL Injection

|
l

request.getParameter ("p user");

Class Function

"SELECT * FROM

"WHERE idZ'" + HVH;

1. Source Code
2. Model

stmt .executeQuer _
3. Security Knowledge

} Class Function
Sources of taint: Class: ServletRequest, Function: getParameter return
PassThrough: Class: String return
Sinks Class: Statement, Function: executeQuery argl

14 EJRTIFY“

Code Example: SQL Injection

request.getParameter ("p user");

Function

Source Code
Model

1
stmt .executeQuer 2. _
3. Security Knowledge
4
5

} Class Function Perform Analysis
Present Results
Sources of taint: Class: ServletRequest, Function: getParameter return
PassThrough: Class: String return
Sinks Class: Statement, Function: executeQuery argl

15 [FORTFY

Critical Attributes

e Language support
» Understands the relevant languages/dialects
e Analysis algorithms
» Uses the right techniques to find and prioritize issues
e Capacity
> Able to gulp down millions of lines of code
e Rule set

» Modeling rules, security properties

e Results management
» Allow human to review results
» Prioritization of issues

» Control over what to report
16 P [FORTIFY

Only Two Ways to Go Wrong

e False positives (false issues reported)
» Incomplete/inaccurate model
J ISSI rul
Missing u_es _ The tool that
» Conservative analysis cried “wolfl” Vissing &

e False negatives (real issues not r 2d) (getail can kill.
» Incomplete/inaccurate model

» Missing rules
» Forgiving analysis

Tt TR

Two Ways to Use the Static Analysis Tool

1. Analyze completed programs
> Large number of results
> Most people have to start here
» Good motivator

1. Analyze as you write code
> Run as part of build
> Nightly/weekly/milestone
» Fix as you go

18 LFt'ﬁRTlFY@

Adopting a Static Analysis Tool

1) Some culture change required
> More than just another tool

» Often carries the banner for software security
program

- Pitfall: the tool doesn’t solve the problem by itself

2) Define the playing field
» Choose specific objectives
» Build a gate

3) Teach up front
» Software security education is paramount
» Tool training is helpful too

19 @RTFW

Adopting a Static Analysis Tool

4) Start small
» Do a pilot rollout to a friendly dev group
» Build on your success

5) Go for the throat
> Tools detect lots of stuff. Turn most of it off.
» Focus on easy-to-understand, highly relevant problems.

6) Appoint a champion
» Make sure there is a point person on the dev team
» Choose a developer who knows a little about everything

20 @RTFW

Adopting a Static Analysis Tool

/) Measure the outcome
» Keep track of tool findings
» Keep track of outcome (issues fixed)

8) Make it your own
» Investigate customization
» Map tool against internal security standards.

» Best case scenario is cyclic:
» The tool reinforces coding guidelines
» Coding guidelines are written with automated checking in mind
9) The first time around is the worst
» Budget 2x typical cycle cost

> Typical numbers: 10% of time for security,
21 20% for the first time [FORTIFY

Challenges of Static Analysis

1. Completed programs

> Are not written with security in mind

» Contain multiple paradigms and technologies

» Exemplify varying developer skill and techniques
2. Which causes static analysis to produce

» Large numbers of issues

» Widely varying issues

> Issues that are difficult to triage

22 EDRTIFY“

EDRT":Y@ I§RCE)G%AE\JM\5NEG

[WITH - .

STATIC ANALYSIS

Brian Chess & Jacob West

[FORTIFY

Demo Timel

24 EJRTIFY”

Security in the Development Lifecycle

' ;
' ;
: Test :
' ;
' ;
: ;
: Static Dynamic Runtime |
. Analysis Analysis Protection |

[

Team Sizes at Microsoft

2500 Windows Dev vs. Test team size

2000 /
1500 /
1000 /
500 7

0 | | | | | | |
1992 1994 1996 1998 2000 2002 2004 2008

¢ dev
¢ test

From The Build Master: Microsoft’'s Software Configuration
Management Best Practices (Maraia 2005)

26 EJRTIFY“

Problem

e QA people lack security understanding
(and we will not force them to have that!)

Good:
e Have good test coverage
e Time and resources

27 [FORTIFY

Why Fault Injection Fails

e Bad input derail the program
e Cannot mutate function tests and retain coverage

Add Enter Enter
tocart Address

O—>O—>O

Input Input Input

e Result:
» Bad test coverage
» Missed Vulnerabilities

28 EJRTIFY“

Example: SQL Injection

user = request.getParameter ("p user");

TaintUtil.setTaint (user, 1);

try {

sgl = "SELECT * FROM users " +
"WHERE 1d='" + user + "'";

TaintUtil.setTaint (sql,user.getTaint()) ;

TaintUtil.checkTaint (sql) ;

stmt .executeQuery (sql) ;

}

29 [FORTIFY

e Instrument the program

1. Methods that introduce input
» HttpServletRequest.getParameter()
» PreparedStatement.executeQuery()

<

2. Methods to check for taint

o Statement.execuetQuery()
o JspWriter.print()

<

> Mechanism to track Taint

o Moadify the java.lang.String class
o Modify stringBuilder en StringBuffer

30 EJRTIFY“

Security in the Development Lifecycle

Static Dynamic Runtime
Analysis Analysis Protection

Protecting Programs at Runtime

e If you can find bugs: fix them!
e Additional layer of protection
e More context than external systems:

/ Web Application Firewalls
—~— Apache Tomcat

Web Application

Apache ‘ Runtime Protection \

httpd

Client

e Flexible response: log, block, etc
e Low performance overhead is a must

X Potential to detect misuse in addition to bugs E‘E’ S—

Security in the Development Lifecycle

' :

' ;

Plan || Build Test Field |
' :

' ;

: :

I Static Dynamic Runtime !

. Analysis Analysis Protection !

[

So the 360 view of the program during the development cycle
[FORTIFY

33

Mistakes happen. Plan for them!
Security is now part of the SDLC

Tools bring security expertise

Tools make code review efficient

They are not an out-of-the box solution

34 EJRTIFY“

Thanks!

Matias Madou
mmadou@fortify.com

35 EJRTIFY”

